Stretch activates nitric oxide production in pulmonary vascular endothelial cells in situ.

نویسندگان

  • Wolfgang M Kuebler
  • Ulrike Uhlig
  • Torsten Goldmann
  • Gregor Schael
  • Alexander Kerem
  • Kay Exner
  • Christian Martin
  • Ekkehard Vollmer
  • Stefan Uhlig
چکیده

Whereas endothelial responses to shear stress have been studied extensively, the responses to circumferential vascular stretch are yet poorly defined. Circumferential stretch in pulmonary microvessels is largely determined by the transmural pressure gradient, hence by both vascular perfusion and alveolar ventilation pressures. Here, we have studied the production of nitric oxide (NO) by the endothelial nitric oxide synthase (eNOS) in two different models of vascular stretch in the intact lung: In isolated-perfused rat lungs, vascular stretch was induced by elevation of vascular pressure. In situ digital fluorescence microscopy revealed stretch-dependent NO production, which was localized to capillary endothelial cells and inhibited by NOS blockers. In isolated-perfused mouse lungs, vascular stretch was generated by ventilation with elevated negative pressure. Stretch-induced phosphorylation of Akt and eNOS in lung endothelial cells was demonstrated by immunohistochemistry and increased NO production by in situ fluorescence microscopy. Stretch-induced endothelial responses in both models were abrogated by pretreatment with phosphatidylinositol-3-OH kinase inhibitors. These findings demonstrate that circumferential stretch activates NO production in pulmonary endothelial cells by a signaling cascade involving phosphatidylinositol-3-OH kinase, Akt, and eNOS and that this response is independent from the mechanical factors causing vascular distension.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide and the bioactivities

Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...

متن کامل

Nitric oxide and the bioactivities

Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...

متن کامل

The Effect of Some Herbal Extracts on Nitric Oxide Production in Endothelial Cells 3T3 Cell Line

Introduction: Some studies have demonstrated the potential of herbal drugs for the treatment of various diseases associated with impaired vascular nitric oxide (NO). For diagnosis of the mechanism of these herbal plants, it seems necessary to evaluate the herbal extracts on the Endothelium cell. The aim of the study was to investigate the effect of extract of Trigonella foenum-graecum (T.foenum...

متن کامل

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

Effect of the Sera of Patients with Multiple Sclerosis on Apoptosis and Nitric Oxide Production of Endothelial Cells

Background & Aims: Multiple sclerosis (MS) is one of the chronic autoimmune diseases of the central nervous system with unknown etiology. The present study aimed to investigate the apoptosis and nitric oxide (NO) production of endothelial cells treated with serum of patients with MS and response to interferon beta (IFN- ) therapy. Methods: Human umbilical vein endothelial cells were treated wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of respiratory and critical care medicine

دوره 168 11  شماره 

صفحات  -

تاریخ انتشار 2003